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Nucleosides containing sulfur atoms instead of lactol
oxygen have been the focus of much recent research
because of their potent biological activity. Walker1 and
Secrist2 independently reported that 2′-deoxy-4′-thiopy-
rimidine nucleosides (1) have antiviral and cytotoxic
effects. 2′,3′-Dideoxy-3′-thiacytidine (3TC, 2) has been
shown to have potent anti-human immunodeficiency
virus (HIV) activity4 and anti-human hepatitis B virus
activity.5,6 Furthermore, new antineoplastic cytidine
analogues having various 2′-substituents, 2′-deoxy-2′,2′-
difluorocytidine7 (Gemcitabine, 3), 2′-deoxy-2′-methyl-
enecytidine8 (DMDC, 4), and 2′-deoxy-2′(E)-(fluorometh-
ylene)cytidine (5)9 have been described.
The specific properties of 4′-thionucleosides and potent

cytotoxicity of 2′-substituted cytidine analogues prompted
us to synthesize 4′-thioDMDC (6) and 4′-thiogemcitabine
(7) (Chart I). Since the first synthesis of 4′-thionucleo-
sides was described in 1964,10 several alternate synthetic
methods have been reported.1-3,11-14 These procedures
are not optimal, however, due to a lengthy manipu-

lation3,10-12 and limitation to the use of 2′-deoxy deriva-
tives.1,2,13 Thus, a new synthetic strategy utilizing more
generally available compounds would increase the suc-
cess of this synthesis. Recent progress was made in this
regard by Chu et al.,6 in the synthesis of 3TC. These
results led us to synthesize the title compounds employ-
ing an anhydrothiosugar as a key intermediate. In the
present study, we describe a novel synthesis of 4′-
thiocytidines originating from D-glucose.
In four steps, diisopropylideneglucose 8 was converted

to 3-benzylxylose 9, which was then subjected to acidic
methanolysis to produce an anomeric mixture of 1-O-
methyl-3-O-benzylxylose (10) with a high yield. Anomers
were easily separated by a silica gel column. The
separated R- and â-anomers of 10 were mesylated,
producing R- and â-11, followed by treatment with
sodium sulfide in DMF to yield bicyclic R- and â-12 at
78% and 73% yield, respectively. Acid hydrolysis and
hydride reduction of R,â-12 produced 1,4-anhydro-4-
thioarabinitol 13with a 90% yield.15 The primary alcohol
of 13 was selectively protected with a tert-butyldiphen-
ylsilyl (TBDPS) group to produce 14, which was oxidized
with DMSO-Ac2O, giving 15. The Wittig reaction of 15
yielded 16 (efficiency: 74% of 14). A reaction with boron
trichloride (BCl3) effectively deprotected the benzyl group
of 16 to yield 17 at over 90% efficiency.
Pioneering works of Kita et al. led to application of

Pummerer reaction for the synthesis of C-C bond at the
R-position of sulfoxides.16 O’Neil and Hamilton also
reported the syntheses of a tetrahydrothienylthymine
and other derivatives using TMSOTf as a catalyst under
similar reaction conditions.17 On the basis of this, we
designed the synthesis of the 4′-thiocytidine utilizing
sulfoxide 18 obtained fromm-CPBA oxidation of 17. The
compound 18 was treated with 3 equiv of the silylated
N-acetylcytosine and 2 equiv of TMSOTf producing the
4′-thiocytidine derivative R,â-19 (Scheme 1) with a 74%
yield (R:â ) 2.5:1).18 The reaction conditions have not
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been optimized yet; â-selectivity remains a problem.
Finally, the R,â-mixture of 19 was deprotected by tet-
rabutylammonium fluoride (TBAF) followed by aqueous
ammonia in methanol. Pure R- and â- anomers of 6 were
obtained from the mixture by HPLC (R; 34%, â; 13%).
The method described above was applied to the syn-

thesis of 4′-thiogemcitabine. (Diethylamido)sulfur tri-
fluoride (DAST) treatment19 of ketone 15 produced the
2-deoxy-2,2-difluoro derivative 20 with a 48% yield.
Compound 20 was simultaneously deprotected and ben-
zoylated to give 21, which was oxidized to produce 22.
The Pummerer type glycosylation of 22 resulted in a 57%
yield of the protected 4′-thiogemcitabine 23 (Scheme 2)
as an anomeric mixture (R:â ) 2.6:1).20 Deprotection of
23, followed by HPLC separation, produced the R- and
â-derivatives of 4′-thiogemcitabine (7).
We evaluated the antineoplastic properties of 6 and 7

against human T-cell leukemia (CCRF-HSB-2) and KB
cells. None of the R-4′-thionucleosides had any measur-
able activity, whereas â-4′-thioDMDC (6) exhibited a
potent antitumor activity against CCRF-HSB-2 cells (IC50

) 0.0091 µg/mL). In contrast, â-4′-thiogemcitabine (7)
was only weakly active in the same cell line (IC50 ) 1.5
µg/mL). â-4′-Thio-DMDC (6) was also effective against
a solid tumor, KB cells (IC50 ) 0.12 µg/mL). The activity
was higher than that of DMDC 4 (KB cell; IC50 ) 0.44
µg/mL). It is noteworthy that 4′-thioDMDC (6) had
potent antineoplastic activity, but 4′-thiogemcitabine (7)
did not, while both 3 and 4 were highly active.7,8

Acknowledgment. The authors are grateful to Dr.
K. Horita, Health Science University of Hokkaido, for
useful suggestions. The authors thank Dr. A. Kuni-
naka, Yamasa Corporation, for his critical reading of
the manuscript. The authors also acknowledge Mr. M.
Morozumi and Dr. H. Machida, Yamasa Corporation,
for their helpful discussions.

Supporting Information Available: Experimental pro-
cedures and characterization data (9 pages).

JO9519423

(18) The stereochemistry of the anomeric carbon was determined
by an NOE analysis of the free nucleoside 6 (minor isomer). It showed
7.1% NOE at the H-3′ proton when irradiated at H-6.

(19) An, S.-H.; Bobek, M. Tetrahedron Lett. 1986, 27, 3219-3222.
(20) The stereochemistry at the 1′-position was determined, after

deprotection, by comparison of coupling constants of H-1′ with that of
gemcitabin described in ref 7a.

Scheme 1a

a (a) BnBr, NaH, DMF, THF; (b) 2 M HCl, THF; (c) NaIO4, H2O, MeOH; (d) NaBH4, MeOH, 82% from 8; (e) 5% HCl/MeOH, 91%; (f)
MsCl, pyridine; (g) Na2S, DMF, 100 °C, 78% (R-anomer) and 73% (â-anomer) from 10; (h) 4 M HCl, THF; (i) NaBH4, MeOH. 90% from 12;
(j) TBDPSCl, imidazole, DMF, 87%; (k) DMSO, Ac2O; (l) Ph3P+CH3Br-, NaH, tert-amyl alcohol, THF, 74% from 14; (m) BCl3, CH2Cl2,
-78 °C, then MeOH, pyridine. 92%; (n) m-CPBA, CH2Cl2, -78 °C; (o) silylated N-acetylcytosine, TMSOTf, ClCH2CH2Cl, 0 °C, 74% from
17; (p) TBAF, THF; (q) aqueous NH3, MeOH, then HPLC separation, 34% (R-anomer) and 13% (â-anomer) from 19.

Scheme 2a

a (a) DAST, benzene, 0 °C, and then room temperature 48%;
(b) BCl3, CH2Cl2, -78 °C, and then MeOH, pyridine; (c) Bz2O,
Et3N, DMAP, CH3CN, 79% from 20; (d) m-CPBA, CH2Cl2, -78
°C; (e) silylatedN-acetylcytosine, TMSOTf, ClCH2CH2Cl, 0 °C, 57%
from 21; (f) TBAF, THF; (g) aqueous NH3, MeOH, then HPLC
separation, 36% (R-anomer) and 15% (â-anomer) from 23.

Communications J. Org. Chem., Vol. 61, No. 3, 1996 823


